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Abstract

Background: Sickle cell disease (SCD) is a blood disorder caused by a point mutation on the beta globin gene
resulting in the synthesis of abnormal hemoglobin. Fetal hemoglobin (HbF) reduces disease severity, but the levels
vary from one individual to another. Most research has focused on common genetic variants which differ across
populations and hence do not fully account for HbF variation.

Methods: We investigated rare and common genetic variants that influence HbF levels in 14 SCD patients to
elucidate variants and pathways in SCD patients with extreme HbF levels (≥7.7% for high HbF) and (≤2.5% for low
HbF) in Tanzania. We performed targeted next generation sequencing (Illumina_Miseq) covering exonic and other
significant fetal hemoglobin-associated loci, including BCL11A, MYB, HOXA9, HBB, HBG1, HBG2, CHD4, KLF1, MBD3,
ZBTB7A and PGLYRP1.

Results: Results revealed a range of genetic variants, including bi-allelic and multi-allelic SNPs, frameshift insertions
and deletions, some of which have functional importance. Notably, there were significantly more deletions in
individuals with high HbF levels (11% vs 0.9%). We identified frameshift deletions in individuals with high HbF levels
and frameshift insertions in individuals with low HbF. CHD4 and MBD3 genes, interacting in the same sub-network,
were identified to have a significant number of pathogenic or non-synonymous mutations in individuals with low
HbF levels, suggesting an important role of epigenetic pathways in the regulation of HbF synthesis.

Conclusions: This study provides new insights in selecting essential variants and identifying potential biological
pathways associated with extreme HbF levels in SCD interrogating multiple genomic variants associated with HbF
in SCD.
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Background
Sickle cell disease (SCD) and thalassemia are the most
common hemoglobinopathies worldwide, with 270 mil-
lion carriers and 300,000 to 500,000 annual births [1].
Up to 70% of global SCD annual births occur in sub-
Saharan Africa. Reports show that 50 to 80% of affected
children in these countries die annually [2]. Tanzania
ranks fifth worldwide regarding the number of children
born with SCD, estimated at 8000–11,000 births annu-
ally. 15–20% of the population are SCD carriers (HbAS)
and therefore potential parents of future babies with
SCD [3, 4]. Without intervention, it is estimated that up
to 50% of children with SCD will die before the age of 5
years [1]. Thus, SCD intervention at early stages of life
may prevent premature deaths and reduce under-five
mortality.
SCD is a monogenic condition resulting from a single

mutation in the β-globin gene or hemoglobin subunit
beta (HBB), on chromosome 11, leading to the produc-
tion of an abnormal β-hemoglobin chain namely
hemoglobin S (HbS). SCD is a complex hemoglobin dis-
order with multiple phenotypic expressions that mani-
fest as both chronic and acute complications, affecting
multiple organs. Clinical manifestations vary immensely,
with some individuals being entirely asymptomatic while
others suffer from severe forms of the disease. The
marked phenotypic heterogeneity of SCD is due to both
genetic and environmental determinants [5]. A major
disease modifier is the presence of fetal hemoglobin
(HbF): high HbF levels are associated with reduced mor-
bidity and mortality [6, 7].
Hemoglobin is a tetrametric molecule composed of 2-

alpha-globin and 2 gamma globin molecules in HbF and 2
alpha-globin and two 2 beta-globin molecules in HbA [8].
HbF is normally expressed during the development of the
fetus and starts to decline just before birth, when it is re-
placed by adult hemoglobin namely hemoglobin A (HbA)
in normal individuals and hemoglobin S (HbS) in individ-
uals with SCD [9]. Red blood cells of normal adults
(HbAA) contain mainly hemoglobin A (HbA), with 2.5–
3.5% Hemoglobin A2 (HbA2), and < 1% HbF [10]. How-
ever, 10 to 15% of adults possess higher HbF levels (up to
5.0%). Although this has no significant consequences in
healthy individuals, HbF background variability in SCD
can reach levels with clinical benefit to patients [11]. Con-
sequently, efforts to understand and control the produc-
tion of HbF in SCD patients may result in interventions of
significant clinical benefit to individuals with SCD.
The levels of both HbF and F cells (erythrocytes with

measurable amounts of HbF) are highly heritable traits
[12] with up to 89% of variation being influenced by gen-
etic factors. The remaining proportion is accounted for by
age, sex and environmental factors. It is now clear that
HbF is a quantitative trait which is shaped by genetic

factors both linked and unlinked to the β-globin gene.
Three main loci, namely BCL11A on chromosome 2,
HMIP on chromosome 6, and HBG on chromosome 11,
have been identified across populations as associated with
HbF levels [13–15]. The variants in these loci have been
reported to contribute 20–50% of HbF variation in non-
African populations, however the impact of these variants
is different from one population to another. An example is
a strong variant at HMIP, which is rare in the Tanzanian
population and hence has a smaller impact on HbF levels
there [16, 17]. HbF levels in SCD, as a quantitative trait, is
expected to be influenced by other polymorphisms, in-
cluding insertions/deletions, rare mutations or copy num-
ber variations [15].
New genetic and proteomic techniques have led to the

identification of several HbF expression regulators. Krup-
pel like factor (KLF1) has been reported as one of the key
regulators of HbF expression with dual functions: direct
activation of HbF expression through activation of β-
globin [18] and an indirect silencing of γ-globin gene
through BCL11A1 [19]. Other players within the HbF
regulation network that have been reported include
GATA1, FOG1 and SOX6, which are erythroid transcrip-
tion factors and are believed to interact with BCL11A in
HbF regulation [20]. In addition, nuclear receptors TR2/
TR4 which are associated with corepressors of DNA meth-
yltransferase 1 (DNMT1) and lysine-specific demethylase 1
(LSD1) have also been implicated. DNMT1 and LSD1 are
a part of the DRED complex, a known repressor of embry-
onic and fetal globin genes in adults [21]. Recently, studies
of epigenetic pathways of HbF regulation have elucidated
the involvement of the nucleosome remodeling and deace-
tylase (NuRD) complex [22, 23].
Despite the high prevalence of SCD in Africa, African

patient populations remain understudied. Unique insight
can be obtained from these patients, considering the
substantial African genetic diversity and exceptional
mapping resolution. The high burden of SCD in sub Sa-
haran Africa makes it important that genetic studies, ul-
timately aimed at improved therapeutic intervention, are
carried out in African countries. To address this, we
conducted a Genome Wide Association Study (GWAS)
[16, 17, 24] and candidate genotyping for HbF in Tanza-
nian individuals with SCD, which led to validation of
known HbF variants and identification of novel ones.
This report documents a follow-up study aimed at per-
forming in-depth targeted sequencing around previously
identified loci to descriptively compare, in detail, discov-
ered polymorphisms between individuals with extreme
HbF levels. For the first time, we have conducted tar-
geted next-generation sequencing to investigate known
and novel genetic variants and pathways associated with
extreme HbF levels in individuals with Sickle cell disease
(SCD) in Tanzania. From these selected individuals, we
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have identified different types of polymorphisms, includ-
ing single nucleotide polymorphisms (SNPs), structural
variants such as insertions and deletions (INDELS), sug-
gesting potential modifier effects. Interestingly, key dis-
covered variants, together with previously identified
variants, are enriched in biological pathways that under-
lie the HbF regulation.

Methods
Study design and population
We performed a cross-sectional study involving the Dar-
es-Salaam (Tanzania) Muhimbili National Hospital SCD
cohort, which consisted of 1725 SCD patients, recruited
between 2004 and 2009, for prospective surveillance,
with three monthly interval visits for routine check-up
[3]. These patients were subjected to folic acid (5 mg/
day) and penicillin. Different hematological factors, in-
cluding complete blood counts and foetal haemoglobin
(HbF) quantifications, were measured during hospital
visits. Written informed consent was obtained for each
adult patient (> 16 years) and ethical approval given by the
Muhimbili University Research and Publications Commit-
tee (MU/RP/AEC/VOLX1/33 and 2017-03-06/AEC/Vol
X11/65). Informed and written consent was obtained from
parents or guardians for all minor patients (≤16 years).
The study involved 14 individuals confirmed to have SCD
(HbSS or S-β°thalassaemia), over 5 years old, with extreme
HbF levels. Excluded were individuals confirmed to be AS
or AA following Hb electrophoresis and HPLC, those with
HbF measured at an age of less than 5 years, with incon-
clusive SCD laboratory diagnosis where a repeat test for
confirmation could not be performed, and individuals
who were on hydroxyurea therapy.

Phenotyping
Individuals were selected using previously collected HbF
data. In this population, the median HbF was 4.6 [Inter-
quartile range (IQR): 2.5–7.7)] [17] and therefore 0–
2.5% was considered a low HbF level while 7.7% and
above was considered a high HbF level.

Sequencing
DNA was extracted from archived buffy coat samples
using the Nucleon BACC II system (GE Healthcare, Little
Chalfont, UK). The sequencing panel was adopted from a
research panel at King’s College London and customized
using Illumina DesignStudio (https://designstudio.illu-
mina.com/). Targeted sequencing covered exons and non-
coding regions around validated and candidate fetal
hemoglobin-influencing loci, including B-cell lymphoma/
leukemia 11A (BCL11A), proto-oncogene, transcription
factor (MYB), homeobox A9 (HOXA9), hemoglobin subunit
beta (HBB), hemoglobin subunit gamma 1 (HBG1),
hemoglobin subunit gamma 2 (HBG2), chromodomain

helicase DNA binding protein 4 (CHD4), Kruppel like fac-
tor 1 (KLF1), methyl-CpG binding domain protein 3
(MBD3), zinc finger and BTB domain containing 7A
(ZBTB7A), peptidoglycan recognition protein 1 (PGLYRP1)
on chromosomes 2, 6, 7, 11, 12 and 19, respectively
(Table 2). Selection of target regions was based on previ-
ous associated known and novel loci in the studied popu-
lation and those reported recently in other populations.
Sequencing was performed on the Illumina MiSeq plat-
form at the Kilimanjaro Clinical Research Institute (KCRI),
Tanzania, following TruSeq Custom Amplicon Low Input
Kit protocol.

Reads mapping, alignment, variant calling and variant
calling quality control
Figure 1 illustrates and summarizes the pipeline used
from alignment to prioritization of mutation. We recon-
structed the reads by realigning them to the complete
reference genome build hg38 using BWA [25]. The Pic-
ard tool kit [26] was used to sort and mark reads dupli-
cation, after alignment. We used an ensemble approach
implemented in VariantMetaCaller [27] that may find a
call consensus in detecting SNPs and short indels [28].
The best practice specific to each caller were adopted
[29]. We combined information generated from two in-
dependent variant caller pipelines: (1) An incremental
joint variant discovery implemented in GATK 3.0 Hap-
lotypeCaller [26], which calls samples independently to
produce gVCF files and leverages the information from
the independent gVCF file to produce a final call-set at
the genotyping step; (2) bcftools via mpileup [30, 31]
variant callers (Fig. 1). The final call-set from each sub-
ject group was produced from VariantMetaCaller [27].

Annotation, in silico prediction of mutation and
prioritization
High confidence variants were called using VariantMeta-
Caller [27] from the dataset including 14 Tanzanian SCD
patients (nine with high HbF and five with low HbF
levels). We used ANNOVAR [32] to perform gene-based
annotation to detect whether SNPs cause protein coding
changes and to produce a list of the amino acids that are
affected. ANNOVAR contains up to 21 different func-
tional scores including SIFT [33, 34], LRT [35], Mutation-
Taster, MutationAssessor [36], FATHMM [37], fathmm-
MKL [38], RadialSVM, LR, PROVEAN, MetaSVM,
MetaLR, DANN, M-CAP, Eigen, GenoCanyon [39],
CADD [40], GERP++ [41], Polyphen2 HVAR, Polyphen2
HDIV [42] and PhyloP, SiPhy [43].
From the resulting functional annotated dataset, we

first filtered variants for rarity, exonic variants, non-
synonymous, stop codons, predicted functional signifi-
cance and deleteriousness [33, 34]. First, the resulting
functional annotated data set was independently filtered
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for predicted functional status (of which each predicted
functional status is “deleterious” (D), “probably dam-
aging” (D), “disease_causing_automatic” (A) or “disease_
causing” (D) [44–46] from these 21 in silico prediction
mutation tools. Recent evaluation of in silico prediction
tools for mutation effects suggested these tools are quite
similar [47]. However, the evaluation of these tools was
conducted mostly in non-African populations. Here we
opted for an extreme casting vote approach to retain
only a variant if it had at least 17 predicted functional
status “D” or “A” out of 21, as one can expect a true in
silico mutant variant to similarly be reported from most
of these tools. Second, the retained variants were further
filtered for rarity, exonic variants, nonsynonymous muta-
tions, yielding a final candidate list of predicted mutant
and genetic modifier variants.

Network and enrichment analysis
To find out how predicted in silico mutant and modifier
genes interact with others at the systems level, we analyzed
how the set of all interactive genes from knowledge-based
Protein-Protein Interaction (PPI) interacted with our identi-
fied in silico mutant genes and the rest of targeted genes,
respectively. This has enabled the identification of potential

biological pathways in which these genes participate. To
achieve this, we first mapped the identified mutant SNPs to
their closest genes. We mapped genes to a comprehensive
human PPI network [48, 49] to identify sub-networks con-
taining mutant and genetics modifier variant genes and
their interactions. Using the Enrichr software [50], we ex-
amined how closely these genes within the extracted sub-
networks are associated with human phenotypes and eluci-
date biological processes and pathways in which these
genes participate, molecular functions and association with
potential human phenotypes. The most significant pathway
enriched for genes in the networks were selected from
KEGG [51], Panther [52], Biocarta [53] and Reactome [54].
Gene ontologies, including molecular functions and bio-
logical processes, from the Gene Ontology database [55].

Fig. 1 Workflow of the data analysis. Describes the bioinformatics pipelines from alignment of DNA reads, variants calling to in silico
mutation prioritization

Table 1 Characteristics of Tanzanian individuals sickle cell
disease (SCD) with extreme fetal hemoglobin levels

High HbF ≥ 7.7% Low HbF≤ 2.5%

N 9 5

Age range (Years) 5–19 8–21

HbF (%) 15–32 0.3–2.2
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Results
Sample characterization
This study involved 14 SCD individuals with extreme (9
with high and 5 with low) HbF levels. Table 1, describes
the age and HbF ranges of the included individuals.

Summary of variants found in individuals with high and
low HbF levels
A total of 873 and 1196 highly confident variants were de-
termined in SCD patients with high and low HbF levels,
respectively, on chromosomes 2, 6, 7, 11, 12 and 19. Sur-
prisingly, this shows a difference in the overall variation
between the two groups of individuals with SCD.
The identified variants are comprised of 77 and 82%

biallelic SNPs, 0.15 and 0.11% multi-allelic SNPs, 11 and
0.9% deletions and 0.9 and 0.7% insertions in patients
with high and low HbF levels (adjusted χ2 p-values =
1.16e-03 and 2.96e-06, as compared to uniform distribu-
tion), respectively. From these discovered variants, we
detect 1 and 0 frameshift-deletions, 2 and 4 frameshift-
insertions, 1 and 1 non-frameshift-insertions, 34 and 41
nonsynonymous, 3 and 3 stop-gain, 49 and 60 synonym-
ous variants in SCD individuals with high/low HbF level,
respectively. Based on our targeted chromosomal se-
quencing, we found significant difference in coverage of
variants in the molecular structure (Fig. 2) between SCD

patients with high and low HbF level (adjusted Fisher
exact p-value = 6.1e-04), at 3’untranslated region
(3’UTR) (2.98% versus 4.24%), 5′ untranslated region
(5’UTR) (4.24% versus 0.69%), upstream (0.23, 2.98%).
Critically, we observed that patients with high HbF have
0% variants in splicing regions, while patients with low
HbF level have 1.49% (Fig. 2).

Potential pathogenic variants
Because African-specific reported pathogenic variants
are underrepresented in current databases of pathogenic
variants [56], here we aimed at descriptively characteriz-
ing possible pathogenic variants from the set of poly-
morphisms in the retained candidate in silico mutant
genes and our initial target genes discovery variants be-
tween the two patient groups. Following our pipeline
and mutation prioritization, we identified six SNPs in
genes (ZBTB7A, CHD4, HBB, PGLYRP1, MBD3 and
MYB) with functional impact (Table 2 and Supplemen-
tary File: Table S2) in both data generated from the SCD
patients with high and low HbF levels. Two genes,
CHD4 and the MBD3, were found with a difference in
the number of pathogenic variants (Table 3 and Supple-
mentary File: Table S2): individuals with SCD with low
HbF levels were found to have more pathogenic, benign
or uncertain significant pathogenic variants.

Fig. 2 Characterization of SCD gene function and exome map from the targeted next generation sequencing: This included the exon and full
regions for validated and novel fetal hemoglobin-associated loci, including B-cell lymphoma/leukemia 11A (BCL11A), proto-oncogene, transcription
factor (MYB), Homeobox A9 (HOXA9), Hemoglobin subunit beta (HBB), hemoglobin subunit gamma 1 (HBG1), hemoglobin subunit gamma 2 (HBG2),
chromodomain helicase DNA binding protein 4 (CHD4), Kruppel like factor 1 (KLF1), methyl-CpG binding domain protein 3 (MBD3), zinc finger and BTB
domain containing 7A (ZBTB7A), Peptidoglycan recognition protein 1 (PGLYRP1) on chromosomes 2, 6, 7, 11, 12 and 19, respectively. a gene
functions from patients with high HbF levels and b gene functions from patients with low HbF levels
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Individuals with SCD with lower HbF levels had a sig-
nificantly higher number of variants with insertions at
both CHD4 and MBD3 than patients with high HbF
levels (Table 2 and Supplementary File: Table S1). While
both groups have small numbers of deletion variants, in-
dividuals with low HbF level had fewer deletions than
those with high HbF level.
Based on Exome Aggregation Consortium (ExAC)

database of pathogenic mutation [25], we found no sig-
nificant difference in the number of pathogenic variants
in both SCD patients with high or low HbF levels in
genes (BCL11A), proto-oncogene, transcription factor
(MYB), Homeobox A9 (HOXA9), hemoglobin subunit
gamma 2 (HBG2), Kruppel like factor 1 (KLF1), zinc fin-
ger and BTB domain containing 7A (ZBTB7A) in chro-
mosomes 2, 6, 7, 11, 12 and 19, respectively. Overall, our

targeted next generation sequencing of HbF associated
genetic loci identified a disproportional number of loci
with a few variants, particularly deletions, present in pa-
tients with high levels of HbF.

Biological pathways and processes associated with genes
with high mutational burdens
Independent roles of the identified candidate in silico mu-
tant genes (Supplementary File: Table S1, Fig. 2) or our
initial targeted nine genes are known in Sickle Cell dis-
ease. However, how these genes interact with others at the
systems level is currently unknown in various populations
of African SCD patients. As described in the Methods sec-
tion, using the set of all interactive genes including our
identified mutant genes and the rest of targeted genes
may contribute in identifying potential Sickle Cell-specific

Table 2 Characterization of polymorphisms within mutant and modifiers genes in SCA patients from Tanzania. Details of gene
variants can be found in Supplementary File: Table S1

(High; low HbF level)

Gene #Polymorphisms #MNP #SNPs #Deletion #Insertion #Pathogenic #Benign #USig*

PGLYRP1 4; 4 0; 0 4; 4 0; 0 0; 0 0; 0 1; 0 3;4

ZBTB7A 13; 11 0; 1 10; 9 0; 0 1; 1 0; 0 2; 2 11;9

CHD4 25; 32 3; 3 19; 27 1; 0 1; 3 2; 5 3; 4 20;23

MBD3 14; 19 0; 2 12; 14 1; 1 1; 4 1; 2 0; 1 12;17

KLF1 11; 4 1; 0 10; 4 0; 0 0; 0 0; 0 1; 1 10;3

MYB 24; 27 1; 1 20; 23 0; 2 3; 1 0; 0 3; 1 21;26

BCL11A 27; 27 1; 2 25; 21 1; 2 0; 2 0; 0 4; 1 23; 26

HBG2 5; 17 1; 1 3; 12 0; 2 1; 2 0; 0 0; 0 5; 17

HOXA9 2; 2 0; 0 1; 1 0; 0 1; 1 0; 0 0; 0 2; 2

HBB 9; 10 0; 0 9; 10 0; 0 0; 0 0; 0 1; 1 8; 9

Abbreviation: USig* is the number variant with uncertain significance of pathogenicity

Table 3 Genes with high deleterious and loss-of-function mutations in SCA patients from Tanzania. Details of mutation on SNPs
below can be found in Supplementary File: Table S2

CHR Gene #SNPs (High; low
HbF level)

Exonic Function # SP1

chr19 ZBTB7A 2; 1 Nonsynonymous MutationTaster, FATHMM, fathmm-MKL, RadialSVM, LR, PROVEAN, MetaSVM, MetaLR, CADD,
GERP++, DANN, M-CAP, Eigen, GenoCanyon, Polyphen2 HVAR, Polyphen2 HDIV, PhyloP and
SiPhy

chr12 CHD4 11; 4 Nonsynonymous SIFT, LRT, MutationTaster, MutationAssessor, FATHMM, fathmm-MKL, RadialSVM, LR, PROVEAN,
MetaSVM, MetaLR, CADD, GERP++, DANN, M-CAP, GenoCanyon, Polyphen2 HVAR, Polyphen2
HDIV

chr11 HBB 3; 2 Nonsynonymous SIFT, LRT, MutationAssessor, FATHMM, fathmm-MKL, RadialSVM, LR, ROVEAN, MetaSVM,
MetaLR, CADD, DANN, Polyphen2 HVAR, Polyphen2 HDIV, PhyloP and SiPhy

chr19 PGLYRP1 4; 4 Nonsynonymous SIFT, LRT, MutationAssessor, FATHMM, fathmm-MKL, RadialSVM, LR, PROVEAN, MetaSVM,
DANN, M-CAP, GenoCanyon, Polyphen2 HVAR, Polyphen2 HDIV, PhyloP and SiPhy

chr19 MBD3 1; 2 Stop-gain SIFT, LRT, MutationTaster, MutationAssessor, LR, PROVEAN, MetaSVM, MetaLR, CADD, GERP++,
DANN, M-CAP, Eigen, GenoCanyon, Polyphen2 HVAR, Polyphen2 HDIV, PhyloP and SiPhy

chr6 MYB 1; 1 Nonsynonymous SIFT, LRT, MutationTaster, MutationAssessor, FATHMM, fathmm-MKL, RadialSVM, LR, PROVEAN,
MetaSVM, MetaLR, CADD, GERP++, DANN, M-CAP, GenoCanyon, Polyphen2 HVAR, Polyphen2
HDIV, PhyloP

Abbreviation: # SP1 is the number of in silico mutation tools predicted and considered damaging
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pathways in which modifier and mutant genes participate
together in conferring variation in Sickle Cell Disease se-
verity. The identified Protein-Protein Interaction (PPI)
sub-network formed from 2 genes (Fig. 3a) showed an en-
richment of rare variants with deleterious effects was
enriched for the PRC2 complex which influence long-term
gene silencing through modification of histone tails (P =
0.000004; Fig. 3b), and is highly associated with or in-
volved in the TP-dependent chromatin remodeling (P =
1.6e-12, Fig. 3b) biological process, nominally associated
with pallor (P = 0.0014, Fig. 3b). CHD4 and MBD3 were
found to be the most important genes (hubs) of sub-
network (Fig. 4a), which are nominally associated with the
B cell survival pathway (P = 0.018, Fig. 4b), known to be
implicated in the ATP-dependent chromatin re-modeling
biological process (P = 6e-15, Fig. 4b) and associated with
polycythemia disorder (P = 0.0001, Fig. 4b).

Discussion
This is the first study in Africa to conduct targeted next
generation sequencing to investigate genetic modifiers
and pathways associated with extreme fetal hemoglobin

(HbF) in individuals with SCD. Most of the loci (SNPs)
that have been found to associate with HbF by GWAS
only show possible associations with variants covered by
the array chip used. The approach taken in this study
was to perform in-depth sequencing around previously
identified loci to descriptively compare, in detail, discov-
ered polymorphisms between individuals with extreme
HbF levels. We have identified single nucleotide poly-
morphisms (SNPs), insertions (IN) and deletions (DEL)
across 8 targeted regions in chromosomes 2, 6, 7, 11, 12
and 19. We found differing types of polymorphisms, in-
cluding SNPs and INDELS between individuals with low
HbF versus those with high HbF, suggesting potential
modifier effect. Interestingly, key discovered variants, to-
gether with previously identified variants, are enriched
in biological pathways that underlie the HbF regulation.
It is worth also noting that possible structural variants

in these patient groups may make the sequencing off be-
tween the two groups. Furthermore, current challenges,
including (1) limitation of variant calling tools in African
data [57], (2) sequencing errors and structural variants
in African data [58] and (3) under-representation of

Fig. 3 Biological sub-network of the candidate mutant gene and identified modifier genes in 14 SCD patients from Tanzania. a sub-networks of
the mutant gene and identified candidate genetic modifiers include CHD4 and MBD3. b description of the top most significant pathways, GO
biological process, and Human Phenotypes associated with the identified variants
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African samples in the current reference genome [58, 59],
may contribute to the observed difference in variants dis-
covered in both high and low HbF level in individuals with
SCD. We found more deletions in individuals with high
HbF than those with low HbF levels indicating their role
in HbF synthesis pathways. A number of significant dele-
tions have been reported before, particularly in the globin
cluster [60–62]. In this study, we have identified additional
potential deletions across the targeted regions (Table 2).
We observed more insertions in individuals with high
HbF than in those with low HbF. However, frameshift de-
letions were more prevalent in individuals with high HbF,
while frameshift insertions were more prevalent in indi-
viduals with low HbF. Frameshift deletions and insertion
may lead to abnormal proteins due to shorter or longer
sequences, respectively.
We also looked at variants located at untranslated re-

gions (UTR) both at 3′ and 5′ ends which are involved
differently in regulation of gene expression. Interestingly,
in individuals with high HbF levels, variants in the 5’UTR
were more prevalent as opposed to more variants in the
3’UTR in individuals with low HbF levels. Molecular

mechanisms of the 5’UTR include regulating translation
of main coding sequences while the 3’UTR contain bind-
ing sites for microRNA (miRNA) which takes part in the
timing and rate of translation of the corresponding
mRNA. Hence the difference in variants in these two re-
gions between individuals with high HbF versus those
with low HbF is notable and may contribute differently in
the regulation of HbF synthesis.
We looked specifically at non-synonymous mutations

and found that out of the eight targets, six were found
to have mutations with functional impact. Of interest,
the genes CHD4 and MBD3, functionally interacting in
the same sub-network (see Fig. 3), had more pathogenic
mutations in individuals with low HbF levels than those
with high HbF. CHD4 is a chromatin organization
modifier which confers the chromatin remodeling
function of the NuRD complex. CHD4 has been re-
ported to repress γ-globin gene expression in mice
[63, 64]. Similarly, MBD3 operates as a NuRD com-
plex and is associated with the transcription factors
GATA-1 and FOG-1, which directly regulate genes
within the β-globin locus.

Fig. 4 Biological sub-network of the candidate mutant gene and identified modifier genes in 14 SCD patients from Tanzania. a sub-networks of
our target sequencing variants include ZBTB7A, BCL11A, MYB, HBB, HOXA9, HBG2, CHD4, KLF1, MBD3. b description of the top most significant
pathways, GO biological process, and Human Phenotypes associated with the identified variants
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The human protein-protein interaction (PPI) (Fig. 3a)
for CHD4 and MBD3 proteins indicates that they are es-
sential to system survival and hence their biological
functions tend to be evolutionary conserved [63]. Thus,
in presence of non-synonymous mutations, it is expected
that individual components (proteins and interactions)
in the system must adapt to a changing environment
while maintaining the system’s primary function. In this
study, we observed that, to maintain its robustness while
sustaining its function under fluctuating environmental
conditions, the system possibly triggers different mecha-
nisms. This ensures that the network retains the modu-
larity degree in order to provide a selective advantage for
the host system by conserving and/or gaining useful
functional interactions within the network to ensure an
increase of HbF levels. As an illustration, CHD4, as well
as MBD3, indirectly interact with KLF1 and MYB, which
are potent activators of BCL11A. CHD4 is believed to
exert its gamma globin silencing effect by positively
regulating the BCL11A and KLF1 genes. In addition,
BCL11A and MYB are known to be involved in γ-globin
gene regulation, leading to either elevation or reduction
of HbF levels [64]. The difference in frequency of non-
synonymous mutations in the individuals with high HbF
levels versus those with low levels reflect different inter-
actions within this network and the resulting levels of
HbF.
Though these post-analysis results are consistent with

the literature and are biologically relevant, it is worth
noting that, due to relatively high noise related to high-
throughput data or experiments from which interactions
are inferred, the protein-protein interaction network
used may contain incorrectly classified interactions, i.e.,
failing to detect interactions (false negatives) or wrongly
identifying some other interactions (false positives). This
suggests these results still need to be validated experi-
mentally. In this study, we minimized the likelihood of
incorrectly classified interaction computationally by: (1)
using a data integration model, combining information
from multiple interacting data sources into one unified
network, and (2) applying a strict interaction reliability
or confidence score cutoff. These techniques are ex-
pected to significantly reduce the false negative and posi-
tive rate of the network produced, leading to a PPI
network of high confidence interactions with an in-
creased coverage [65].
Given our study design, we did not perform genetics dif-

ferentiation tests or statistical tests of differences in minor
allele frequencies or genotype counts. Instead, we have
aimed at descriptively characterizing the proportion of
variants between the low/high HbF from high confident
variants calling, compare the count of pathogenic variants
between the groups and identify potential Sickle Cell-
specific pathways in which modifier and mutant genes

participate in conferring variation in Sickle Cell severity.
Importantly, our current study suggests (1) a difference in
the overall genetic variation between Sickle Cell patients
with high and low HbF level and, (2) biological pathways,
including the PRC2 complex which sets long-term gene si-
lencing through modification of histone tails (P =
0.000004; Fig. 3b), hemoglobin’s Chaperone (P = 0.001,
Fig. 4b) and B-cell Survival (P = 0.018, Fig. 4b). These
identified pathways may harbour potential interactive
Sickle Cell-specific genes including modifier, mutant and
other genes (Figs. 3 and 4) in conferring variation in sever-
ity among individuals with SCD. This work has focused
on the importance of studying both genetic and epigenetic
pathways in HbF regulation. Our findings suggest an in-
depth whole genome sequencing study to fully
characterize modifier genes implicated in the variation of
SCD severity. This approach may contribute to future de-
velopment of interventions for SCD, including drugs and
gene therapy. Finally, to note is, the modest sample size
limited the expected statistical power, which could yield
false positive associations and missed others. However,
different results obtained provide a strong hypothesis for
future studies. With a larger sample size, it would be pos-
sible to perform genetics differentiation tests or statistical
tests of differences in minor allele frequencies or genotype
counts and possibly identify additional essential variants
and biological pathways associated with extreme HbF
levels in SCD using the model set by this study.

Conclusions
This study has shown that the analysis of genetic modi-
fiers associated with HbF in SCD patients can elucidate
genetic factors underlying extreme (low or high) HbF
levels in these patients. The study has identified frame-
shift deletion in SCD patients with high HbF levels and
frameshift insertions in both CHD4 and MBD3 for those
with low HbF, and some of these insertions are associ-
ated with the SCD pathogenesis.
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